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A characteristic property of nonlinear oscillatory systems is their ability to mode lock to a periodic, external,
driving signal. In an n :m mode-locked state, the driven system executes n oscillations to every m oscillations
of the driving signal, with a constant phase relationship between the two oscillations. We investigate mode
locking for a mathematical model of the cell cycle in budding yeast. We determine which variables are most
effective in coupling an external stimulus to the cell cycle oscillator, and speculate about whether experiments
are feasible and informative for this model organism.
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INTRODUCTION

Mutations that lead to visible aberrations in the cell cycle
of budding yeast were isolated over 30 years ago, and the
gradual elucidation of the function of the affected gene and
their biochemical properties have made this system one of
the best understood genetic regulatory networks in biology
�1,2�. Homologues to all the key genes in budding and fis-
sion yeast exist in metazoans and make the cell cycle oscil-
lator truly universal. This oscillator is not a simple two vari-
able affair in analogy to its physical counterpart, and even
with the limited markers that could be scored 30 years ago,
dozens of genes were found that affected the process. This is
in part because of the complex reconfigurations the cell has
to undergo to divide, and the number of genes that are coor-
dinately regulated is about 15% of the total �3�. This is not an
anomaly but typical of the reprogramming that a cell under-
goes during mating, sporulation, starvation, etc. It is fitting
that some of the first mathematical models of biological net-
works in eukaryotic cells were for the cell cycle �4–7�

To model such a system by differential equations in anal-
ogy with a well mixed chemical reaction �perhaps allowing
for a few separate subcellular compartments� is a daunting
task, since few of the kinetic constants are easy to determine.
There is no in vitro reconstitution of the yeast cell cycle,
unlike the simpler system in frog egg extracts �2�. In fact
most of the available data for modeling is still genetic, where
one or more components of the system are removed, and the
functioning of others observed, often qualitatively. The
strength of genetics is that processes can be ordered in a
pathway �e.g., B is downstream of A if mutating A and B is
equivalent to mutating B alone� without knowing all the in-
termediates. Thus A activates B can become A represses C
represses B when a new component C is discovered, without

vitiating the earlier description involving A and B alone.
However, pathways are seldom strictly serial and mutations
that produce an easily observed phenotype often have com-
plex ramifications throughout the cell that we are unable to
characterize. The resulting cells can be severely impaired.

Mathematicians long ago posed the question of how to
obtain insight into the solutions of the differential equations
describing physical systems without having to integrate them
�8�. One outcome was a theory based on geometric reasoning
that enumerated “typical” behaviors of nonlinear systems
when the solution bifurcated from one type of solution to
another. Bifurcation theory has recently been applied to the
differential equation model for the cell cycle in Ref. 9.

Another application of geometric reasoning was the ob-
servation that a subset of the cell cycle genes acts as a relax-
ation oscillator �4� with two locally stable states that are
destabilized by a slowly varying parameter �the mass in the
yeast model�. The metastability and hysteresis inherent in a
relaxation oscillator has been observed in egg extracts
�10,11� and yeast �12�. A unification of the negative feedback
oscillator that drives the rapidly cycling egg extracts, with
the system in budding yeast, was recently formulated by
Cross �13�. A completely different way to tame the parameter
explosion concomitant with a differential equation model is
to resort to a binary on/off description for the genes or their
activities �14�.

In this paper we propose in analogy to the observation of
hysteresis another consequence of the geometric description
of an oscillating system, namely that it should mode lock to
an external periodic perturbation. We illustrate the effect
with a version of Chen et al.’s cell cycle model �6�, though
clearly the interest is to achieve this in the laboratory. Ex-
periments of the type we propose can be done on wild type
�wt� cells and hence the appeal of learning something about
the natural system without taking it apart.

RESULTS

To understand the essence of mode locking, consider a
stable periodic orbit in a system with many variables. Stabil-
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ity means that nearby orbits are attracted onto the periodic
one. With some technical assumptions, the phase variable on
the periodic orbit serves as a coordinate for all points nearby,
if one associates with them, the phase to which they con-
verge as they approach the orbit. By assumption, the phase
along the periodic orbit is always increasing with time �no
stagnation points�, so that we can choose an angular coordi-
nate � to make the angular velocity a constant, �. Finally,
we idealize the external perturbation as a series of instanta-
neous impulses with period T. Each impulse has a magnitude
characterized by a “force,” f , in the physical variables de-
scribing the system. Then the dynamics for small f can be
characterized as

d�/dt = � + g���f��t� , �1�

where g��� is a periodic function of � �magnitude of order
1� obtained by projecting from the physical variable to the
phase variable, and ��t� is a sum of unit impulses �Dirac
delta functions� spaced by the period T. �If the motion re-
mains close to the periodic orbit, then it can be described by
� and thus the function g only depends on �.�

Let �0 be the phase just before a pulse, then the phase �1
just before the next pulse is

�1 = �0 + g��0�f + �T �mod 2�� . �2�

To understand the long term evolution of Eq. �1� it suffices to
characterize the behavior of the so-called Poincaré map Eq.
�2�. Mode locking means that the system’s period equals a
rational multiple �n /m� of the period of the external pertur-
bation for a range of periods T. In terms of Eq. �2�, this
requires that after m �integer� iterations of Eq. �2�, � aug-
ments by 2�n and returns precisely to its initial value on the
circle. In the simplest case �1:1� when the system period
locks to the external one, a fixed point �* of Eq. �2� is de-
fined by

g��*�f + �T = 2� . �3�

Thus locking occurs for T within an interval of size f around
the natural period, 2��. Locking also implies there is a fixed
phase, �*, between the perturbation and the solution whose
value adjusts to accommodate the value of T.

Figure 1 shows graphically for Eq. �2� how a pair of
stable-unstable fixed points appears as �T is varied for fixed
f . In terms of Eq. �3�, for smooth functions g, there is a pair
of roots near the extrema, with one positive and one negative
derivative.

Linearizing Eq. �2� around �*���=�−�*� gives

��1 = �1 + fg���*����0. �4�

Thus the fixed point with negative derivative is stable, as
should be obvious already from Fig. 1. Perturbations decay
to zero, exponentially in time, but do so slowly since f is
assumed to be small. It should be plausible that the external
perturbation does not have to be an impulse; what matters is
the phase shift it produces during one traversal of the peri-
odic orbit. Also, the sign of f is immaterial. Flipping it
merely interchanges the stable and unstable fixed points.

Budding yeast divide asymmetrically �Fig. 2�a��. The
daughter is smaller than the mother and undergoes a longer

growth phase prior to reentering the cell cycle. Start is the
point at which the cell is committed to another round of
division and is marked morphologically by the first appear-
ance of a bud. DNA replication also begins at this time. The
chromosomes organize on the spindle and then separate in
mitosis. The new daughter can then detach from the mother.
The cell cycle is coordinated by the cyclin genes �2�, and
some of the genes that figure in the following discussion are
shown in Fig. 2�b�. The network is conveniently decomposed
into two oscillators �12�. The negative feedback oscillator is
most prominent in rapidly cycling systems such as fly em-
bryos and entails an alternation between DNA replication
and mitosis. The level of the mitotic cyclin Clb2 builds up
following the start. It must be degraded for mitotic exit and
this is accomplished by its negative regulator, a complex
involving Cdc20, that is activated by Clb2 itself. The relax-
ational oscillator is built around two fixed points, a low Clb2
growth phase, G1 �enforced by two Clb2 repressors, Cdh1,
and Sic1�, followed by a high Clb2 phase encompassing start
and mitosis. The G1 phase terminates when a second set of
cyclins Cln1,2,3 reach a level sufficient to repress the repres-
sors of Clb2 and initiate start. Similarly the high Clb2 state is
destabilized in part when a gene, CDC14, is activated which
reverses the phosphorylations targeted by Clb2. Relaxational
oscillators exhibit metastability and hysterisis.

With a view towards future experiments, we will investi-
gate the mode-locking properties of the model of Refs. 6, 12,
and 13. The mass in this model is the surrogate for all growth
processes. It is unique among all the variables in that its
growth is exponential at a rate defined by the parameter �
and uncoupled from the others. Then, in accordance with a
well-established genetic pathway �in which not all the mo-
lecular components are known �15��, the mass controls the
activation rate for genes �mainly CLN3� that control Start
and terminate G1 �Fig. 2�. Budding yeast divide asymmetri-

FIG. 1. The Poincaré map, Eq. �2�, is a function that maps the
circle �� from 0 to 2�� onto itself and is invertible. The solid curve
shows a value of �T that intersects the diagonal line in two points
giving rise to stable �closed circle� and unstable �open circle� fixed
points �Eq. �4��. The dashed curve shows a larger value of �T ��1

moves upward� with no fixed points. Fixed points occur when
��T−2�� is of order the size “bump” in the curve, i.e., �f . The
arrows show the flow of successive iterates of the map, into the
stable fixed point and away from the unstable one.
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cally, the daughter is smaller at separation and takes longer
to divide again. To fit the cycle times of mother and daugh-
ter, Chen et al. �6� introduce an ad hoc parameter, the
mother-daughter mass ratio at division, This parameter, to-
gether with � then fit the periods of mother and daughter.
This system cannot mode lock since the periods are defined
by numerical parameters in the model and cannot vary in
response to an external forcing.

We therefore adapt another model of growth. The total
mass still grows exponentially at a rate �, but we now im-
pose that once the bud forms, all the new mass generated
goes into the daughter. As a consequence, the mother grows
larger with each successive birth �i.e., it accrues all mass
created prior to budding in G1�, and the mechanics of cell
growth then dictate that its period decreases with each birth.
It cannot lock. The mass of the daughter, however, is now
coupled with the other variables of the system so mode lock-
ing is a possibility. This model was also considered in Ref.
�6� and accords with the observation that the size of the
mothers viewed in the microscope is increasing. They re-
jected it because the periods of mothers and daughters did
not match published experiments �16�. There may be other
ways to fix this problem, and we focus on the daughter cells
with this mass partition formula for the remainder of this
paper. To better match experiments, we change � from

0.005776 to 0.008 giving a daughter cycle time of 138 min
�with the time from bud to division of 50 min� and a cycle
time of 68 min for first time mothers, which decreases by
3 min with each birth. All other parameters are taken from
Ref. �6�.

Even though the model differs quantitatively from experi-
ment as to cycle periods, we believe it still can make infor-
mative predictions about how effective the coupling to vari-
ous genes will be for controlling the cycle time. Observation
of locking per se would not be a direct test of our mass
partitioning model since our geometric discussion implies
that unless locking is explicitly prohibited by the equations,
it will occur. The question is rather how prominent are the
mode-locked regions in parameter space.

To achieve locking, the most obvious variables to exter-
nally couple to are those that directly sense the mass. Both,
in experiment and the model, a small mass at birth leads to a
longer cycle time and a larger mass on the next division, and
thus, mass homeostasis �15�. In conformity with experi-
ments, the model uses the mass to achieve homeostasis pri-
marily via terms in the equations for the cyclins Cln2 and
Cln3 whose growth controls the duration of G1.

It is experimentally feasible to augment the production of
a desired gene product by placing it under the control of
regulatory DNA that responds to the presence of a metabolite
such as galactose. Then, pulsing a metabolite into the solu-
tion induces expression of the gene. To be modestly faithful
to what might be done, we model the external perturbation as
a square pulse added to the production rate from the gene of
interest �the active forms of the protein sometimes require
additional transformations and they cannot be coupled to di-
rectly�. A summary of the genes and parameter ranges we
explored is provided in Table I.

Figure 3 conveys a global impression of how the mass of
daughter cells evolves through several cycles, as T is varied
through the regime of locking. A convenient reporter for the
cell cycle is the daughter mass, which becomes nonzero at

FIG. 2. �Color online� Schematic of the cell cycle in budding
yeast �a�. There is a variable length period of growth until the cell
reaches a size sufficient for “Start,” when the cell commits to a new
round of division. The bud that will become the new cell first ap-
pears at “Start” and DNA replication begins. When cell division
occurs the mother is generally larger than the daughter and reenters
the cell cycle sooner. The principal proteins controlling the cell
cycle are shown in �b� with some of the couplings to the events in
�a� shown in italic. The proteins comprising the relaxational oscil-
lator are in the dashed box and organized around two fixed points
defined by the mutual inhibition of Clb2 and Cdh1+Sic1. In the
negative feedback oscillator �dotted box�, Clb2 activates its repres-
sor, the Cdc20-APC complex �see text�.

TABLE I. The period intervals for mode locking for various
variables and strengths of perturbation. The perturbation is a square
pulse �duration period/6 for Cln2,3 and period/20 for Clb2� added
to the variable. The units are only defined in relation to the model,
but the ratios are meaningful. To give a sense of scale in more
physical terms, the ratio of the maximum amplitude of the forced
variable, to its wt value, is given in parenthesis. The amplitude ratio
with and without forcing varies considerably with the phase of the
force, and is least ambiguous for a large amplitude pulse, so we
only include it for the first entry for each variable.

Variable
Pulse amplitude
�ratio with wt�

Period interval
�min�

Cln3 0.004 �2� 100–138

0.002 114–138

0.001 128–138

Cln2 0.1 �2.2� 108–138

0.03 95–138

0.01 125–138

Clb2 0.001 ��1.1� 139–149
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bud time, and resets to zero at division. When T is too long,
the cell will occasionally add an extra cycle between pulses,
and when T is too short, extra pulses are inserted between
cell division cycles. The mode-locked solution has fixed rela-
tive phase between the perturbation and the cell variables. In
terms of the Poincaré map Eq. �2�, when T is too long, n
iterations of the map will give a total phase change of
2��n+1�, and when T is too short there will be relative
phase loss. Mode locking corresponds to a stable fixed point.
We now consider in more detail the relation among the
physical variables when locking occurs and it is sufficient to
just plot one period of the orbit.

The effects of perturbing the G1 cyclins are illustrated in
Figs. 4�a�–4�c� for Cln3. The dominant pathway is Cln3
activates Cln2, and both then induce budding. The shortest
period possible occurs when the pulse comes just after divi-
sion �at the beginning of G1�. It then triggers the premature

activation of Cln2, which in turn results in early budding and
a shortened G1. The time from bud to division is longer than
wt �75 vs 50 min� and the mass at budding about the same.
The increased time following budding is needed to maintain
the daughter mass. The longest period for which locking is
possible is just the wt period, Fig. 4�c�, when the pulse of
Cln3 falls at the time Cln2 normally activates. The time from
bud to division is also equal to the wt value, but the mass is
15% smaller. When the external period is longer than wt,
normal activation of budding still occurs, and the relative
phase of pulse and division evolves in time. By augmenting
Cln3 �or Cln2� one can only shorten the period, not lengthen
it. Even when the external period is 138 �i.e., wt�, phase
locking is evident by the stable phase relation between the
onset of the pulse and the onset of Cln2. For Cln3, the mode-

FIG. 3. The daughter mass �solid line, arbitrary units� as a func-
tion of time for impulses of Cln3 �dashed� with periods T, longer
than the locking interval �T=160 min, �a��, within the mode-locked
interval �T=120 min, �b��, and shorter than the mode-locked inter-
val �T=90 min, �c��. The amplitude of the perturbation is given by
the first entry in Table I. Note that there is an extra cell cycle in �a�
and an extra pulse in �c�. The natural period of the cell is 138 min,
which is the average period in �c�.

FIG. 4. �Color online� Time traces of the principal variables
controlling G1, Cln2 �red, long dash�, Cln3 �green, short dash�, and
the daughter mass �blue, solid� for wt cells period 138 �min� in �a�,
and cells mode locked to pulses in Cln3 �amplitude 0.004� with
period 100 �min� in �b� and 138 �min� in �c�. The units on the y axis
are arbitrary. The external pulse to Cln3 is clearly visible in its
traces. The daughter mass increases from zero when the bud ini-
tiates. It is reset to zero at division.
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locked interval scales as a linear function of f , Table I.
Perturbing Cln2 gives similar effects, Fig. 5. The shortest

period is achieved with a very attenuated G1 �coupled to an
augmented time of bud-division of 79 min�, and a Cln2 pro-
file that is actually lower than wt but broader. �In contrast to
Cln3, which is an instantaneous function of the mass in the
model, here we added the pulse to d Cln2/dt, so its square
shape is not so visible in Cln2�t�.� For the longest locking
period, Fig. 5�b�, the shape of the Cln2 trace is similar to wt,
but the amplitude is 25% greater. The external pulse is
phased with the natural onset of Cln2�t�. The largest ampli-
tude pulse in Table I for Cln2 is clearly in the nonlinear
regime, since the range of mode-locked periods is larger
when the amplitude decreases.

The G1 cyclins, driven by the mass, are the “slow” vari-
ables which move the system along one of the stable
branches of the relaxation oscillator, in the terminology of
�4,13�. During this period the mitotic cyclin Clb2 is strongly
repressed �i.e., Clb2=0 is a stable solution�. This repression
disappears at budding and Clb2 grows until it induces its
inhibitor Cdc20, which eventually leads to the destruction of
Clb2, cell division, and the next G1. The interplay of these
two proteins constitutes the negative feedback oscillator
�13�, and it is natural to ask whether these can be mode
locked.

The answer is complex, as suggested in Fig. 6. Cdc20
only represses when it is activated. Its activated form is
strongly suppressed until the spindle forms, encoded in the
model by when the variable spn hits 1. When this happens,

there is already a substantial pool of total protein �repre-
sented by the variable Cdc20T�, which without significant
change rapidly converts to active form, destroys Clb2, and
triggers mitosis. The time between spn=1 and division is
2.5 min, i.e., very short compared with the cycle time.
Hence, when we perturb Cdc20T �which is the only variable
physically accessible�, the first appearance of active Cdc20 is
unchanged, since that is controlled by spn, and even the de-
cay of Clb2 is minimally affected, since much less than the
maximum available Cdc20T suffices, when active, to elimi-
nate Clb2. Although the regulatory linkage provided by
Cdc20 is definitely needed to inhibit Clb2, its dynamics do
not play a role in the model.

A standard method for synchronizing yeast cells is to turn
off the production of Cdc20, which arrests all cells in mitosis
�17�. �When it is restored, the population of cells dephases
after about 1.5 division cycles due to the natural variability
between mother and daughter periods.� If we eliminated all
endogenous sources of Cdc20T, in particular the induction
by Clb2, we could not mode lock the system with pulses of
Cdc20T. For some parameters, the suppression of Clb2 was
not strong enough, the mass increased from division to divi-
sions and ultimately the model is no longer believable. Other
parameters gave persistent oscillations, but either with mul-
tiple periods or a superperiod imposed on the cell cycle.
There is probably a curve in the amplitude-period plane
�f ,T� where the division cycle follows the perturbation, but
not a region, which is indicative of mode locking. The failure
to mode lock in this case does not contravene our geometric
arguments, since with no endogenous source of Cdc20 there
is no periodic orbit when f =0. Our entire construction is
predicated on a small external perturbation to a periodic sys-
tem.

Locking in a restricted parameter range is possible by
pulsing in Clb2, Table I. spn grows in response to the level of
Clb2. So, by adding Clb2 just after budding, spn reaches 1 a
bit sooner, division occurs earlier �time bud to division is
45 min, shorter than wt�, mass at division is reduced, and the
overall daughter period is then lengthened. For the minimal
locking period, which approximates wt, the Clb2 pulse is
phased just to terminate with budding, so it is largely de-
stroyed by the repression of Clb2 that occurs prior to bud-

FIG. 5. �Color online� The same variables as in Fig. 4, but with
the external square pulse �solid black line� applied to the differential
equation of Cln2. The pulse amplitude corresponds to the second
Cln2 entry in Table I, and the limiting mode-lock periods 95 min �a�
and 138 min �b� are shown. �Note that the amplitude of Cln2 in �b�
is different from wt in Fig. 4�a�.�

FIG. 6. �Color online� The events in the short interval surround-
ing division showing active Cdc20 �red, long dash�, Clb2 �green,
short dash�, daughter mass �blue, solid step down�, and total Cdc20
protein �black, solid curve�. The spindle forms �spn=1� when the
red curve begins to increase. The curves for the mode-locked and
wt variables are indistinguishable.
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ding. �Technically we only perturb the variable Clb2T, but its
stoichiometric inhibitor, Sic1, is off until G1, so active Clb2
is the same as the total.� Substantially larger perturbations
administered to Clb2 mode lock over a smaller range of pe-
riods for reasons we do not understand. If the model captures
how a cell exits mitosis, then we doubt perturbing Clb2 or
Cdc20 is a viable option for mode locking.

DISCUSSION

What are the prospects for actually mode-locking real
cells? The uncertainties in the model we solved, in particular
the mass partitioning assumption, should not be impediments
in principle since mode locking is a generic property of non-
linear systems. Much more crucial was the assumption that
the model is deterministic, since real cells are quite variable
for reasons that are not understood. Cellular variability could
either be due to molecular noise �small numbers of mol-
ecules�, a variable environment, or deterministic chaos. If the
noise is extrinsic to the equations, the Poincaré map is still a
useful guide to the dynamics. In the simplest case there will
be one stable and one unstable fixed point. The relative phase
between the perturbation and the cycle of a particular cell
depends on when the cell is born. For some phases it will be
pushed away from the unstable point, gain or lose a cycle,
and then be captured by the stable fixed point, Fig. 1. Noise
will either just agitate the phase in the vicinity of the stable
solution, or if larger �or the stable domain is small because
the system is approaching the limits of mode locking�, cause
excursions into the vicinity of the unstable point that move
once around the circle to be recaptured by the stable point

The same considerations govern the behavior of a field of
cells. Assume we start with a single cell and watch it grow

into a cluster. Even in the absence of noise, the preceding
calculation only guarantees the locking of a single cell, since
we followed the dynamics from daughter to daughter. The
founding mother will produce multiple daughters but these
will be born out of phase with the first daughter �and her first
daughters, etc.�. But any chain of primary daughters will get
pulled into the same fixed point. At this stage the experi-
menter might wish he were studying fission yeast, which
divide symmetrically. �Assuming again that the period is not
a fixed number but determined by coupling among the other
variables in the oscillator.�

The calculations described here were carried out with a
modified version of an early cell cycle model �6�. Recently
this model was updated �7� to include new machinery, in-
cluding explicit checkpoint mechanisms and the mitotic exit
network controlling the Cdc14 phosphates �18�. It will be
interesting to see if this model will allow extension of the
mode-locking analysis. For example, we interpreted our in-
ability to mode lock with Cdc20 as being due to checkpoint
inactivation of Cdc20 activity. In the new model, it would be
possible to test for mode locking in the absence of the check-
point machinery. In addition, we have experimentally inter-
preted Cdc14 inactivation as similar to preventing establish-
ment of the low-Cdk state in the relational oscillator branch
of the budding yeast cell cycle �13�. Trying to mode lock
with Cdc14 could thus be the complementary situation to
mode locking with Cln3, which acts on the bistable state in
the opposite direction.

ACKNOWLEDGMENTS

E.D.S. was supported by the NSF under Grant No.
DMR0129848, and F.R.C. by PHS GM47238.

�1� K. Nasmyth, Cell 107, 689 �2001�.
�2� A. Murray and T. Hunt, The Cell Cycle, An Introduction �Ox-

ford University Press, New York, 1993�.
�3� P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K.

Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher,
Mol. Biol. Cell 9, 3273 �1998�.

�4� B. Novak, A. Csikasz-Nagy, B. Gyorffy, K. Nasmyth, and J. J.
Tyson, Philos. Trans. R. Soc. London, Ser. B 353, 2063
�1998�.

�5� A. Sveiczer, A. Csikasz-Nagy, B. Gyorffy, J. J. Tyson, and B.
Novak, Proc. Natl. Acad. Sci. U.S.A. 97, 7865 �2000�.

�6� K. C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak,
and J. J. Tyson, Mol. Biol. Cell 11, 369 �2000�.

�7� K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B.
Novak, and J. J. Tyson, Mol. Biol. Cell 15, 3841 �2004�.

�8� J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields �Springer-
Verlag, Berlin, 1983�.

�9� D. Battogtokh and J. J. Tyson, Chaos 14, 653 �2004�.
�10� J. R. Pomerening, E. D. Sontag, and J. E. Ferrell, Jr., Nat. Cell

Biol. 5, 346 �2003�.
�11� W. Sha, J. Moore, K. Chen, A. D. Lassaletta, C. S. Yi, J. J.

Tyson, and J. C. Sible, Proc. Natl. Acad. Sci. U.S.A. 100, 975
�2003�.

�12� F. R. Cross, V. Archambault, M. Miller, and M. Klovstad, Mol.
Biol. Cell 13, 52 �2002�.

�13� F. R. Cross, Dev. Cell 4, 741 �2003�.
�14� F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, Proc. Natl.

Acad. Sci. U.S.A. 101, 4781 �2004�.
�15� M. N. Hall, M. Raff, and G. Thomas, Cell Growth �Cold

Spring Harbor Lab Press, New York, 2004�.
�16� P. G. Lord and A. E. Wheals, J. Cell. Sci. 50, 361 �1981�.
�17� M. Shirayama, A. Toth, M. Galova, and K. Nasmyth, Nature

�London� 402, 203 �1999�.
�18� D. D’Amours and A. Amon, Genes Dev. 18, 2581 �2004�.

F. R. CROSS AND E. D. SIGGIA PHYSICAL REVIEW E 72, 021910 �2005�

021910-6


